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THE ROLE OF LIGNOCAINE IN THE
TREATMENT OF DECOMPRESSION ILLNESS

A REVIEW OF THE LITERATURE

Simon J Mitchell

Introduction

Decompression illness (DCI) is a complex
multisystem disease of diving and aviation, for which
definitive treatment comprises compression and
administration of hyperbaric oxygen (HBO).  Recent
studies reveal an undesirably high failure rate for current
treatment protocols and indicate the need for alternatives
and/or effective adjuvants to HBO.  In vivo data suggest a
role for lignocaine (lidocaine) in the treatment of DCI, and
possible mechanisms of action in this role have been
identified.  This paper briefly reviews the pathophysiology
and treatment of DCI and, in the context of this discussion,
examines the evidence suggesting a role for lignocaine as
an adjuvant to HBO.  Several studies of lignocaine in the
treatment of DCI or analogous pathologies are currently
under way.

Pathophysiology of decompression illness

Decompression illness arises secondary to the
formation of bubbles outside normal gas containing spaces
(intracorporeal bubbles) following reduction of ambient
pressure.1  Intravascular2-4 and extravascular5-7 bubbles
may arise from inert gases dissolved in the blood or tissue
respectively.  Intravascular bubbles may also arise from
pulmonary barotrauma.8-10

Intravascular bubbles may: obstruct blood vessels
causing tissue ischaemia,11 disrupt endothelium,12,13 and
activate leucocytes14-16 platelets,14,17,18 and biochemical
pathways such as the complement19,20 and kinin1

systems.  Secondary microcirculatory compromise and
tissue ischaemia may follow due to clotting,17,18 intravas-
cular volume loss with red cell sludging,21,22

increase in interstitial fluid pressure,1 and leucocyte
aggregation.23  Extravascular bubbles may mechanically
disrupt both surrounding tissue1 and blood flow through
adjacent microvessels.24,25  Secondary activation of
leucocytes and inflammatory pathways may also follow
extravascular bubble formation.7  Intra- or extravascular
leucocyte activation may cause tissue damage through cy-
totoxic substance release.26,27  In summary, intravascular
and extravascular bubbles may give rise to tissue damage
which may be ischaemic, mechanical, or inflammatory in
nature.

ORIGINAL ARTICLES

Multiple organ systems may be compromised by
these processes,28 however the most dramatic and
potentially debilitating consequences of intracorporeal
bubble formation are observed when the central nervous
system is affected.  Aspects of bubble induced ischaemic
and inflammatory damage to neurones are particularly
relevant to the subsequent discussion of lignocaine.

Cerebral arterial gas embolism (CAGE) may cause
neuronal ischaemia in two phases.  Occupation of a vessel
by a bubble may cause a period of complete ischaemia,
which is relieved by redistribution of the bubble into the
venous circulation,29,30 with restoration of flow.
Subsequently, there may be a more protracted period of
relative ischaemia as perfusion is reduced by secondary
inflammatory changes, particularly the accumulation of
leucocytes on damaged endothelium.31,32

Neuronal ischaemia leads to loss of energy substrate
for membrane ion pump function and a consequent
disabling of intracellular homeostasis.33  There is efflux of
potassium and influx of sodium leading to loss of
excitability (and therefore function), opening of voltage
dependent calcium channels, and release of excitatory amino
acids.  The resultant increase in intracellular calcium, which
is enhanced by opening of agonist operated membrane
channels and calcium sequestration from intracellular
sources, enables a complicated cascade of injurious
reactions, involving protein kinase C and calmodulin, and
ultimately leads to cell death.

Treatment of decompression illness

First aid management of DCI includes resuscitation,
horizontal positioning of the victim, and administration of
100% oxygen (FIO2=1) and fluids.34  Recompression and
HBO are the major components of definitive DCI
treatment.35  Compression reduces bubble size in
accordance with Boyle’s Law, thus encouraging the
redistribution of intravascular bubbles and relieving the
mechanical distortion of tissues by extravascular bubbles.
Hyperbaric oxygen administration increases the diffusion
gradient for nitrogen between bubble and lungs, thus
achieving more rapid bubble resolution and elimination of
nitrogen from tissue.35  Hyperbaric oxygen may also have
a role in reducing the accumulation of leucocytes in
response to tissue and vessel damage or hypoxia.36

Since approximately 3 bar is the greatest oxygen
tension that may be breathed in treatment before the
incidence of convulsions becomes unacceptably high,
modern treatments are most often based on compression to
the equivalent of 18 m of sea water (2.8 bar) breathing
100% oxygen,35 the “minimal recompression oxygen
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tables”.  Animal data do not suggest any advantage for
deeper compressions on air or modified oxygen-nitrogen
mixtures.37,38  However the recently described advantages
of helium oxygen (heliox) mixtures over oxygen in tissue
air bubble resolution,39,40 have raised the possibility of
more effective deeper treatments using heliox, unencum-
bered by risk of convulsion.  Evaluation of heliox tables
versus the minimal recompression oxygen tables in DCI
treatment is currently underway.41

Administration of intravenous fluids to ameliorate
the microcirculatory compromise which follows intravas-
cular volume loss, clotting, and leucocyte
accumulation, is the only adjunctive therapy to
compression which is firmly recommended.35 Although
widespread, the administration of corticosteroids in DCI is
controversial and largely unsupported by convincing data.42

There is some in vivo data to support the use of indometh-
acin, prostaglandin I2 and heparin in combination in DCI,43

but in vivo haemorrhagic complications have been widely
reported and this therapy is not recommended.35

Recent post-recompression follow-up surveys of
several groups of DCI patients consisting mainly of
recreational divers, suggest that failure rates for current
treatment protocols are unacceptably high,44-47 with
residual cognitive changes being prominent.  It follows
that therapeutic recompression strategies more effective
than the minimal recompression oxygen tables are being
tested, and that effective cerebroprotective adjuvants to
recompression are sought.48  One potential adjuvant is
lignocaine and the evidence in support of this is discussed
below.

The role for lignocaine in treatment of DCI

Lignocaine is a cationic amide compound which
blocks membrane sodium channels.  It has a high volume
of distribution, readily crosses the blood brain barrier,49

and is rapidly metabolised by the liver with the metabolites
undergoing renal excretion.50  In sufficient concentrations,
lignocaine can prevent the propagation of action potentials
along excitable membranes.  It is used as an injectable or
topical local anaesthetic, and as an injectable anti-
arrhythmic agent (class lB) in the prophylaxis of
ventricular tachycardia and fibrillation.50  Lignocaine has
a relatively low therapeutic index,50 and a therapeutic range
for antiarrhythmia treatment of 6-21 µmol/l.  Plasma
levels are monitored to prevent toxicity which may be
manifest as cerebral irritability, bradycardia, atrio-
ventricular (A-V) block, or myocardial depression.50  Ligno-
caine should not be administered to patients with a su-
praventricular arrhythmia or heart block.

In vivo data indicate a protective role for lignocaine
in ischaemic cerebral injury and other central nervous
system insults.  Much of this data relate to experiments in

injuries analogous to DCI.  A number of experiments have
been reported which provide possible mechanistic
explanations for lignocaine’s protective effect.  Key
functional protection and mechanistic studies are described
below.

Preservation of neural function during ischaemia by
lignocaine.

Early in vivo studies of CAGE pathophysiology
revealed that such events caused severe cardiac arrhythmias,
acute hypertension,51 severe elevation of intracranial
pressure (ICP) and significant increases in plasma
catecholamines.52  It was also observed that lignocaine
eliminated or significantly attenuated these changes.52,53

It was proposed that these beneficial effects might translate
into protection of cerebral function, and the first
experiment specifically investigating cerebral function
preservation by lignocaine in CAGE was reported by Evans
et al.54,55  Anaesthetised cats were pretreated with 5 mg/
kg lignocaine in a short infusion five minutes before a
single bolus of 0.4 ml of air was injected into the vertebral
artery.  Mean sciatic/cerebral somatosensory evoked
response (SER) in an untreated control group initially fell
to 28% of baseline value, recovering to 60% and 73% over
one and two hours respectively.  The mean SER in the
treatment group initially fell to 68% of baseline,
recovering to 89% and 95% over one and two hours (P<0.01
for all differences).  Lignocaine also attenuated the
increases in heart rate, blood pressure, and ICP seen in the
control group.

The same authors subsequently published another
study using a modified model, and administration of ligno-
caine after the injury.56,57  Cats received 0.08 ml incre-
ments of air into the carotid artery until the SER was

reduced to 10% of baseline levels over a period of 5
minutes.  Five minutes later, treatment group cats received
lignocaine in a 1.5 mg/kg bolus, followed by an infusion at
3 mg/kg over 30 minutes, then 1 mg/kg every 30 minutes
thereafter.  This regimen was demonstrated to achieve
plasma levels of 8-16 µmol/l for the duration of the
 experiment.  Control and treatment group mean SER
recovered to 32.6% and 77.3% of baseline respectively
over 100 minutes (P= 0.001).  In an important additional
experiment lignocaine alone was found to have no effect
on the SER of uninjured cats.

In another CAGE experiment, Dutka et al. produced
cerebral dysfunction in anaesthetised dogs using a single
bolus of 0.4 ml air to the carotid artery, and a
pharmacologically induced post embolic hypertensive
spike.58,59  Animals were not entered into the study unless
the embolus reduced SER to ≤10% of baseline.  Control
and treatment group animals received HBO treatment with
a modified USN Table 6A,60 while treatment animals also
received a post-injury lignocaine infusion using the same
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dosage regimen used by Evans et al.57  On completion of
the Table 6A, the mean treatment group SER had
recovered to 60% baseline versus 32% for the control
group (P< 0.01).  Average post-injury cerebral blood flow
(CBF) was significantly greater in the lignocaine treated
group (P=0.019).  This study was important in the specific
context of DCI therapeutics since a role for lignocaine as
an adjuvant to HBO was indicated.  Limited anecdotal
human data support this contention.  Drewry and Gorman
reported a case of neurological DCI, refractory to HBO, in
which dramatic improvement seemed temporally related to
lignocaine therapy.61

These CAGE experiments generated interest in ligno-
caine as a cerebroprotective agent in other forms of ischae-
mic injury.  While the studies performed in this area are not
directly related to DCI, the emergent role for lignocaine in
brain protection is of relevance.

Gelb et al. describe a feline model of severe focal
cerebral ischaemia (middle cerebral artery occlusion for
six hours) in which a 5 mg/kg bolus of lignocaine produced
a transient protective effect as indicated by preservation of
SER compared with controls.62,63

Sutherland et al. administered a 5 mg/kg bolus of
lignocaine to a treatment group of rats 10 minutes before a
10 minute period of incomplete global ischaemia (achieved
by bilateral carotid artery clamping and artificially induced
hypotension).64  A saline control group received a bolus of
saline equivalent in volume to the lignocaine dose, and an
untreated control group received neither lignocaine nor
saline.  Rats were allowed to recover for seven days after
ischaemia before being sacrificed for cerebral histopathol-
ogy.  In lignocaine treated rats there was
significantly less neuronal injury in the CA3 region of the
hippocampus (P <0.05 compared with untreated controls).
A numerical trend towards less severe grades of injury was
recorded in other areas in the lignocaine treated rats, but
this was not significant.

Shokunbi et al. administered a bolus and infusion of
lignocaine to a treatment group of cats 30 minutes before
and then throughout three hours of middle cerebral artery
occlusion and three hours of reperfusion with SER
monitoring.65  Their dose regimen achieved plasma levels
which peaked at 20.63 µmol/l after the bolus and 30
minutes of the infusion, falling to 12.85 µmol/l after two
hours of reperfusion.  A control group received a bolus and
infusion of saline equivalent in volume to the lignocaine
dose.  Treatment group mean SER was better preserved at
induction of ischaemia, and recovered to higher levels
compared with controls (P <0.05).  Histopathological
analysis post mortem revealed mean infarct size (cross
sectional area of a standardised section) to be significantly
smaller in the treatment group (P <0.05).

In a complex series of experiments using rabbits,

Rasool et al. administered an infusion of lignocaine at 0.2
mg/kg/min for 15 minutes, before, throughout, and for 40
minutes following a 20 minute period of incomplete global
ischaemia titrated to produce standard EEG changes.66

The amplitudes of both the positive and negative peak
potentials of the SER decreased significantly less during
ischaemia, and recovered more quickly and significantly
more completely during reperfusion in the treatment group
compared with a control group.

Nagao et al. administered a 3 mg/kg bolus of ligno-
caine followed by a 2 mg/kg/hr infusion beginning imme-
diately before, and throughout, 12 hours of left
cerebral hemisphere exposure to air achieved by crani-
otomy and dural resection.67  This model precipitates pro-
gressive cerebral oedema and ischaemia.  In the lignocaine
treated animals there was significant preservation of SER
latency duration, preservation of direct cortical response
amplitude in the cortex and white matter, preservation of
cerebral blood flow, and reduced oedema in the cortex,
compared with controls.

Several investigations of lignocaine in cerebral ischaemia
have failed to demonstrate any protective effect.68,69

Shokunbi et al. administered lignocaine to cats in
unconventional doses (50 mg followed by 50 mg/kg/hr) to
produce and maintain EEG flattening, beginning 30
minutes before, and continuing throughout left middle
cerebral artery clamping for four to six hours.68  His-
topathological brain examination at the end of the ischae-
mic period revealed no difference in the size of the grossly
infarcted area between treated and control cats.  The extent
of the severe neuronal alteration was reduced in the treated
group but this was not significant.

Warner et al. administered lignocaine in
unconventional bolus doses (mean 23.5 mg/kg), titrated to
produce a pre-epileptogenic EEG pattern in rats,
immediately before 10 minutes of global ischaemia.69

There was no significant difference between treatment rats
and a control group with regard to post ischaemic EEG
recovery, brain water content at 90 minutes post-ischae-
mia, or histopathological changes at seven days post-is-
chaemia.

McDermott et al. administered lignocaine to cats
concurrent with compression and HBO therapy beginning
15 minutes after air embolism to the carotid artery (0.08 ml
increments sufficient to reduce the SER to <10% of
baseline for 15 minutes).70  The dose regimen used by
Evans et al.57 was employed.   The lignocaine with HBO
group exhibited a significant improvement in SER
recovery compared with a group receiving no treatment at
all, but was not significantly different from a group
receiving HBO alone.  No lignocaine only group was tested,
so this result may simply reflect salvage of the same
population of compromised neurones by HBO and ligno-
caine, with no additive effect.
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Several authors report investigations of lignocaine
protection in spinal injuries.71,72  Kobrine et al.
administered lignocaine using the Evans regimen57 to cats,
beginning 15 minutes after a 15 second balloon catheter
inflation in the T6 epidural space.71  There was significant
return of the sciatic SER of three of five treated cats,
compared with minimal return in only one of five controls.
Moreover, there was markedly less haemorrhagic damage
on histopathological examination in the cords of treated
cats.  In a similar experiment using a weight drop method
to inflict the injury, no recovery occurred in either group.72

However, the weight drop spinal injury may be too severe
to allow a realistic possibility of neuronal recovery with
any treatment.73

In summary, lignocaine administered both
prophylactically and immediately after injury, in doses
designed to achieve plasma levels comparable to
conventional antiarrhythmic levels in humans, has been
demonstrated to be protective of cerebral function in a
number of animal models of air embolism, focal ischae-
mia, and global ischaemia.54-59,62-67  It has failed to pro-
vide protection when administered in doses achieving
plasma levels greater than conventional antiarrhythmic lev-
els, and in relatively severe models of focal and global
ischaemia.68,69  There is conflict regarding its additive
effect to HBO in the treatment of air embolism,58,59,70

and regarding its role in the treatment of spinal injury.71-73

The key features of the cerebral protection studies are
summarised in Table 1.

Mechanisms of protection

The four possible mechanisms commonly proposed
to explain the neuroprotective properties of lignocaine are
respectively titled: the neuronal membrane stabilisation /
ion channel blockade hypothesis; the reduction of the
cerebral metabolic rate of oxygen (CMRO2) hypothesis;
the haemodynamic modification hypothesis; and the
modification of leucocyte and other blood element activity
hypothesis.  The evidence supporting each of these
theories is discussed below.

THE MEMBRANE STABILISATION / ION CHANNEL
BLOCKADE HYPOTHESIS

From the earlier discussion of ischaemic neuronal
injury mechanisms,29 it can be reasoned that a delay or
deceleration of ischaemic ion shifts might protect
neurones.  The protective effect of hypothermia in cerebral
ischaemia74 is now universally accepted and it has been
demonstrated that in ischaemic cortical neurones
hypothermia both decreases the depletion of adenosine
triphosphate (ATP)75 and delays ischaemic ion shifts.76  It
is unclear whether a pharmacologically induced reduction
in ischaemic ion shifts would also equate with
protection.77  Nevertheless, Astrup et al. found that ligno-

caine in extremely high doses (160 mg/kg)
significantly delayed cortical potassium efflux during
circulatory arrest in dogs at normothermia, and added to
the effect of hypothermia.77  They proposed that by
membrane stabilisation, lignocaine might provide
clinically useful brain protection during ischaemia by
“saving the energy needed for maintaining the membrane
potentials by ion pumping”.

In another in vivo study using rats, Prenen et al.
found that intrastriatal tetrodotoxin (another sodium
channel blocker) significantly delayed deflection of the
interstitial cortical potential which indicates significant
cation shifts early in cerebral circulatory arrest.78

Moreover, in rats allowed to survive for 24 hours following
a standardised cerebral ischaemic insult, tetrodotoxin
injected locally into the striatum almost completely
prevented the ionic derangements characteristic of
significant damage which were seen in other cerebral
regions, and in the striatal areas of untreated controls.
They suggested that ischaemic sodium influx into
neurones may be a pivotal event in neuronal death.
Further, they argued that blocking sodium channels and
thereby preventing or slowing these changes may enhance
neuronal recovery in a reversible injury.

A membrane stabilisation role for lignocaine in
 functional protection is supported by Fink who found that
the C fibre action potential decrement in rabbit vagi
incubated in a glucose free medium, was paradoxically
delayed by addition of lignocaine to the incubation fluid.79

Fink’s observation by microelectrode studies that ligno-
caine reduced axonal potassium efflux after membrane
pumps were disabled by hypoglycaemia, suggests that
preservation of excitability was achieved by membrane
stabilisation.

Although Gelb et al. noted that the sodium channel
blockers flecainide and mexiletine, administered in high
doses, were not effective in reducing infarct size in a feline
model of focal ischaemia,80 the model was particularly
severe.  The authors’ conclusion, that the failure of these
agents suggests that lignocaine does not provide protection
by ion channel blockade, is unreasonable.

In addition to ion channel blockade, other aspects of
membrane stabilisation may be relevant to lignocaine’s
neuroprotective properties.  Lignocaine may participate in
hydrophobic and electrostatic interactions with membrane
phospholipids81,82 and these effects may promote physical
membrane stability.83  Certainly, lignocaine reduces
erythrocyte fragility84 and reduces cell to cell fusion.85  It
has also been suggested that membrane stabilisation may
reduce the release of free fatty acids and consequent
generation of prostaglandins and toxic free radicals.64

Finally, membrane stabilisation by lignocaine may prevent
damaging mobilisation of intracellular calcium stores
during ischaemia.86
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TABLE 1

INVESTIGATIONS OF CEREBRAL FUNCTION PROTECTION BY LIGNOCAINE
IN ISCHAEMIC INJURY

Authors Model Dose Dose size Dose Lesion Outcome
timing regimen parameters

STUDIES DEMONSTRATING BENEFIT FROM LIGNOCAINE

Evans et al.54,55 Cat Pre-injury Conventional B CAGE SER
Evans et al.57 Cat Post-injury Conventional B+I CAGE SER
Dutka et al.58,59 Dog Post-injury Conventional B+I CAGE SER
Gelb et al.62,63 Cat Pre-injury Conventional B Focal SER

ischaemia
Shokunbi et al.65 Cat Pre-injury Conventional B+I Focal SER +

ischaemia histopathology
Sutherland et al.64 Rat Pre-injury Conventional B Incomplete Histopathology

global ischaemia
Rasool et al.66 Rabbit Pre-injury Conventional B+I Incomplete SER

global ischaemia
Nagao et al.67 Cat Pre-injury Conventional B+I Cerebral SER

air exposure

STUDIES DEMONSTRATING NO BENEFIT FROM LlGNOCAINE

Shokunbi et al.68 Cat Pre-injury Higher than B+I Focal Histopathology
conventional ischaemia

 Warner et al.69 Rat Pre-injury Higher than B Incomplete Histopathology
conventional global ischaemia

B = bolus dose only.  B+I = bolus and continuous infusion.

Although it is difficult to relate the relevance of in
vivo tetrodotoxin,78 or extremely high doses of ligno-
caine,77 to clinical lignocaine administration, sodium chan-
nel blockade and physical membrane stabilisation are es-
tablished as potential neuroprotective mechanisms for ligno-
caine.

THE CEREBRAL METABOLIC RATE (CMR02) RE-
DUCTION HYPOTHESIS

Early in vitro studies demonstrated that lignocaine in high
concentrations reduced the oxygen consumption of rat brain
cortex87 and porcine brain mitochondria.88  In an
important in vivo experiment, Sakabe et al.89 administered
bolus doses of 3 and 15 mg/kg lignocaine to anaesthetised
dogs and recorded reductions of CMR02 to 90% and 73%
of baseline respectively.  Maximal reduction of CMR02
coincided with peak lignocaine levels in sagittal sinus blood
at 12 and 88 µmol/l for the 3 and 15 mg/kg doses
respectively.  In a further experiment, the CMR02 was
increased significantly above baseline during seizures
induced by a 27 mg/kg dose of lignocaine.  Other authors
have reported selective activation of hippocampal
neurones by large “pre-epileptogenic” lignocaine doses.90

It follows that the dose response profile of lignocaine in
this regard is complex, and that high doses may result in
disadvantageous energy consuming seizures.

Astrup et al. investigated the neuroelectric basis for
reduction of cerebral metabolic rate by lignocaine.91  They
proposed that, in the healthy brain, the previously
demonstrated membrane stabilising property of lignocaine77

reduced the work of ion pumping and therefore CMR02.
Lignocaine administered to dogs in a dose (160 mg/kg)
sufficient to render the EEG isoelectric significantly
reduced both the CMR02 and the cerebral metabolic rate
for glucose (CMRgluc).  This was attributed to abolition of
the metabolic cost of electrical activity, and was proposed
to be similar to the effect of barbiturates.  Lignocaine also
produced a further reduction in CMR02 and CMRgluc after
the EEG had already been flattened with high dose thio-
pentone.  The same was not observed for barbiturate when
the drugs were administered in reverse order.  Astrup et al.
attributed this effect to ion channel blockade, reduced base-
line ion leakage, and consequently reduced baseline ion
pumping activity.  Further investigation of lignocaine as an
adjuvant to hypothermia in protection of the ischaemic
brain was advocated.
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TABLE 2

REPORTED HAEMODYNAMIC EFFECTS OF LIGNOCAINE

Authors MAP MAP ICP ICP CBF CBF
healthy after healthy after healthy a f t e r
brain injury* brain injury* brain injury*

CONVENTIONAL ANTIARRHYTHMIC DOSES OF LIGNOCAINE

Donegan et al.92 Unchanged Decrease

Dutka et al.59 Increase
Evans et al.52 Decrease

Evans et al.55 Decrease Decrease

Evans et al.53 Decrease Decrease

Evans et al.57 Decrease

Johns et al.93 Unchanged

Klein et al.94 Increase
Lescanic et al.95 Unchanged

McDermott et al.70 Decrease

Nagao et al.67 Unchanged Increase
Rasool et al.66 Unchanged Unchanged Unchanged Decrease Unchanged Increase
Sakabe et al.89 Unchanged Unchanged

Shokunbi et al.65 Unchanged Increase
Sutherland et al.64 Decrease

Wiklund et al.96 Increase

UNCONVENTIONALLY HIGH DOSES OF LIGNOCAINE

Astrup et al.91 Decrease Decrease

Evans et al.54 Decrease Decrease

Lescanic et al.95 Decrease

Milde and Milde97 Unchanged

Sakabe et al.89 Decrease

Shokunbi et al.68 Decrease

Tommasino et al.90 Decrease

* = compared with control animals not receiving lignocaine

Although the high lignocaine doses used in Astrup’s
study are not clinically relevant91 a similar action at lower
doses is possible.  This may explain the significant
reduction in CMR02 achieved at standard antiarrhythmic
plasma lignocaine levels in Sakabe’s trial.89  Reduction of
CMR02 by lignocaine may afford clinically useful cerebral
protection in ischaemia.91

THE HAEMODYNAMIC BENEFIT HYPOTHESIS

Several authors suggest that haemodynamic
alterations by lignocaine may contribute to protection of
the ischaemic brain.53,57,59,65-67

The haemodynamic properties of lignocaine noted
by various experimenters are listed in Table
2.52,53,55,57,59,64-67,89-97

Lignocaine in therapeutic doses appears to preserve
CBF, reduce ICP, and prevent arterial hypertension after
brain injury, while having no clear effect on these
parameters in the healthy brain.  How lignocaine achieves
these haemodynamic alterations is unknown.53  Reduction
in mean arterial pressure (MAP) after brain injury may be
due to a decrease in plasma catecholamines.52  This effect
may also explain the observation of an intracranial hypo-
tensive effect for lignocaine during endotracheal
suctioning,92 endotracheal intubation (intravenous ligno-
caine),98 and craniotomy.99  Lignocaine has vasomotor
effects but its dose/vasoactive response profile in the healthy
circulation is complex.  Conventional antiarrhythmic plasma
concentrations cause vasoconstriction,93,100 and
unconventionally high concentrations cause vasoconstric-
tion,93,95 and vaso-dilation,93,101,102

depending on the lignocaine dose and vascular bed studied.
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A vasoconstrictive effect by lignocaine may
contribute to reduction of ICP after brain injury by doses of
lignocaine.  However, the concomitant preservation of post-
injury CBF despite attenuation of a rise in MAP suggests
that cerebral vasoconstriction is not occurring.
Alternatively, post-ischaemic preservation of CBF may be
explained by a protective effect on cerebral blood
vessels,53 either by membrane stabilisation of endothelial
cells or leucocyte deactivation (see later).  Data is lacking
on post-ischaemic effects of unconventionally high ligno-
caine doses/plasma levels on CBF, however it is
notable that, in uninjured animals, such doses seem to
reduce CBF and cause hypotension (Table 2).  It follows
that high lignocaine doses seem likely to haemodynami-
cally disadvantage the brain.

It is concluded that, while the bases for the various
haemodynamic effects of lignocaine are uncertain, these
effects may contribute to its cerebroprotective properties.
For example, depression of neural function after air
embolism has been correlated against reduction of CBF30

and lignocaine preserves CBF after this injury.59  It is
unlikely however, that haemodynamic alteration, whatever
its basis, is the only cerebro-protective mechanism
provided by lignocaine.  In several studies,66,67 a
neuroelectrical protective effect was demonstrated before
any haemodynamic benefit became significant, which
suggested another concurrent protective process.

THE LEUCOCYTE DEACTIVATION HYPOTHESIS

The suggestion that leucocytes have an important
role in DCI brain injury has been mentioned and is
supported by data demonstrating that chemically induced
leucocyte depletion preserves cerebral blood flow and
function after air embolism in rabbits32 and dogs.23

Activated leucocytes have been observed to block
microvessels in animal models of DCI32 and other ischae-
mic injuries.103,104  Of critical importance is the observa-
tion that leucocytes are activated and cause further dam-
age, after restoration of perfusion to ischaemic tissue, for
example following redistribution or resolution of a bubble
in DCI, the so called “reperfusion injury”.105  The
possibility of injury maturation by leucocyte activity after
bubbles have been successfully resolved by HBO therapy
is of considerable concern in DCI therapeutics, and it is
fortunate that HBO also seems to have a role in reducing
leucocyte activity.36  It is also interesting that lignocaine
seems to reduce a variety of leucocyte activities.85,106-110

Lignocaine in concentrations higher than
conventional antiarrhythmic plasma levels decreases
superoxide release,108,110 oxygen consumption,108 lyso-
somal enzyme release,107 chemiluminescence110 and bac-
terial killing110 by stimulated leucocytes in vitro, and re-
duces leucocyte adhesion to venular epithelium in vivo.106

Of particular interest are the findings of Luostarinen et al.
who exposed the microvasculature of an everted hamster

cheek pouch to standard laser induced injury and observed
the rheological effects of topical saline, lignocaine, and
other local anaesthetics.85 When applied at the time of the
injury, lignocaine prevented the irreversible thrombus
formation which occurred in all control animals.  In
particular, injury site leucocyte-endothelium binding was
markedly reduced in the lignocaine exposure trials.  When
applied 15 minutes after injury involving invariable throm-
bus formation, lignocaine produced restoration of flow in
five of six trials.  Moreover, during restoration of flow,
leucocytes were observed to disadhere from endothelium
and each other.  The local anaesthetics tocainide and
bupivacaine, trialled in the same series of experiments, had
no antithrombotic effect.

All of these investigations involved exposure to
concentrations of lignocaine higher than conventional safe
antiarrhythmic levels.  Although the actual leucocyte
exposure concentration after diffusion in the Luostarinen
experiment is unknown,85 there is clearly doubt regarding
the relevance of these results to DCI therapeutics since
such plasma concentrations could not be safely achieved in
humans.  However, in a complex series of in vitro, in vivo,
and human experiments using lignocaine in conventional
antiarrhythmic concentrations, McGregor et al. recorded
reduced leucocyte adherence, reduced inflammation and
reduced migration of leucocytes into inflammatory
exudate.109  In the latter role, lignocaine was found to be
more effective than methylprednisolone, a result described
as “surprising”.  These authors proposed a possible
protective role for lignocaine in myocardial infarction,
arthritis, and “other autoimmune reactions”.  In another
clinically relevant experiment, Peck et al.110 recorded
reduced superoxide anion release from human leucocytes
exposed in vivo for at least 12 hours to plasma
concentrations of lignocaine between 4-20 µmol/l.

The mechanism by which lignocaine modulates
leucocyte activity is not clear, but it may involve alteration
of cytoskeletal function109,111 or inhibition of stimulus-
response coupling at the cell membrane.107  The
impairment of neutrophil migration to sites of
inflammation109 is intriguing and, given the importance in
this process of the CD18 glycoprotein receptor complex on
the leucocyte and the intercellular adhesion molecule
(ICAM-1) expressed on vascular endothelium,112 it would
be interesting to investigate the effect of lignocaine on
expression of these molecules.

Whatever the molecular basis of its effect on
leucocytes, lignocaine may preserve CBF in the injured
brain by reducing leucocyte adherence to damaged en-
dothelium.  Functional protection and reduction of ischae-
mic damage may follow preservation of CBF.  Lignocaine
may also provide protection by reduction of cytotoxic/
inflammatory substance elaboration by leucocytes.
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THE MULTIPLE MECHANISM HYPOTHESIS

It is possible that lignocaine mediates
neuroprotection through a combination of the above
mechanisms.  Indeed, lignocaine would appear to be an
“ideal” approach to the biphasic pattern of CAGE injury,
protecting neurones by membrane stabilisation or CMRO2
reduction during initial vessel occlusion, and then
ameliorating the secondary inflammatory changes after
bubbles redistribute.

Discussion

The key questions to be answered in appraisal of the
experimental data presented above are:

a are the models relevant to DCI; and
b do the data suggest a protective role for ligno-

caine and, if so, what is the ideal administration
regimen?

None of the in vivo studies presented above
involved treatment of decompression injury per se, and no
trials of lignocaine were reported in disease states where
autochthonous (tissue) bubbles may be contributory.
However, a CAGE model was employed in three
studies,55,57,59 and these studies would seem directly
relevant to the predominantly vascular mechanism of
injury in cerebral DCI.1  Other data come from animal
models of focal and global cerebral ischaemia. These
models share with DCI the common mechanism of ischae-
mic injury to neurones, but the relevance to DCI is not
clear since intracorporeal bubble formation is not
involved.62-70  It is concluded that the models in which the
protective action of lignocaine has been investigated may
be classified as either substantially analogous to
DCI,55,57,59 or at least partially relevant.62-70

The clinical relevance of the somatosensory evoked
response as an outcome measure in brain injury is
sometimes questioned.  Dutka et al.59 conclude that SER
recovery is physiologically significant and suggestive of
possible functional benefit.  This issue is discussed in
depth by other authors.113,114

The data suggest a neuroprotective role for ligno-
caine in several forms of ischaemic injury.  However,
protection is not afforded in all models, and factors which
m a y
influence the protective capacity of lignocaine deserve
attention.  These include: the nature and severity of the
injury, the dose and pattern of lignocaine administration
and the timing of lignocaine administration with respect to
the injury.

The nature and severity of the injury appear to be
important determinants of lignocaine’s efficacy.

Significantly, lignocaine protected neuronal function in all
experiments where a CAGE model was employed.  There
were mixed results in trials involving local and global
cerebral ischaemia (Table 1).  The two experiments
demonstrating no benefit involved a relatively severe model
of ischaemia.  It is possible that the pool of compromised
rather than dead neurones was too small for any
intervention to affect outcome.  The relevance of the nature
and severity of the model to the neuroprotective efficacy of
lignocaine has been emphasised by several authors,65,68,70

with the general conclusion being that lignocaine seems to
be most effective in transient and/or incomplete ischaemia,
such as seen in CAGE.  This may reflect an interim
protective capability, for example, by membrane
stabilisation,78 which may be overwhelmed if ischaemia is
either too severe or prolonged.  Further, in CAGE, the
functionally important post-embolic accumulation of
leucocytes in the damaged circulation may be ameliorated
by lignocaine, and this may contribute to its particular
success in this injury.59

Both studies demonstrating no neuroprotective
properties for lignocaine utilised doses larger than
conventional antiarrhythmic regimens, whereas all studies
demonstrating protection utilised conventional
antiarrhythmic doses (Table 1).  This observation may be
coincidental.  However, the finding that high doses of
lignocaine selectively activate hippocampal neurones,
increase metabolic stress, and thereby predispose to is-
chaemic injury,70,115,116 may be important.  Similarly,
the consistent finding of CBF reduction with
unconventionally high doses of lignocaine (Table 2)
suggests that these doses may be haemodynamically
disadvantageous as well as clinically impractical.

The pattern of lignocaine administration (ie. bolus
only vs bolus plus infusion), may be an important
determinant of efficacy.  Several trials of lignocaine in
ischaemic brain injuries have been performed where
animals have been allowed to survive, injuries allowed to
develop over seven days, and where outcome has been
determined by histological examination of the brain.64,69

One study found a marginal protection,64 and the other
found no protective effect69  In both of these studies the
animals were given a bolus dose of lignocaine only,
indicating that the experimenters assumed lignocaine would
exert no effect on the injury maturation process.  Given
that maturation of the lesion would involve a reperfusion
injury with ongoing inflammatory changes mediated
largely by leucocytes,105 and given that lignocaine
reduces the inflammatory activities of leucocytes,106-110

the failure to administer an ongoing lignocaine infusion in
these models seems to be a methodological flaw.  Even in
shorter term experiments, a possible decrement in
protective effect as plasma lignocaine levels fall after the
bolus (such as demonstrated with CMR02 reduction89)
would suggest that a bolus plus infusion regimen is the
most appropriate for assessing protection.
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Finally, although the effect of significantly delayed
administration of lignocaine after ischaemic brain injury is
not addressed by any of the studies, it must be assumed that
the possible benefit will decline as delay increases.  In all
of the in vivo experiments described, lignocaine was
administered either before or within the 10 minutes
following injury. There is no indication of maximum
administration delay before protective effect would decline
or be absent altogether.  It can be hypothesised that
protection on the basis of membrane stabilisation and
prevention of ischaemic ion fluxes would require either
prophylactic or immediate post injury administration.
Protection by modulation of injury maturation may be
afforded by delayed administration, but no data exist to
support or refute this theory.

On the basis of the experimental data reported it is
hypothesised that lignocaine, given in a conventional
antiarrhythmic bolus plus infusion regime, beginning as
soon as possible after the onset of neurological DCI and
continuing for a period of at least 48 hours, may provide
additional clinical benefit to standard HBO treatment.

Current investigations

A randomised, double blinded, controlled trial of
lignocaine in prophylaxis of embolic brain injury in valve
replacement cardiac surgery patients has been initiated at
Greenlane Hospital, Auckland, New Zealand.  This patient
population has been chosen because of the significance of
the problem in its own right, the pathophysiological
similarities to CAGE in divers and the comparative
methodological ease with which the population may be
studied.  Patients 20-70 years old undergoing valve
replacement have preoperative neurological examination
and comprehensive neuropsychological testing.  At
surgery a blinded infusion of lignocaine (in standard
antiarrhythmic doses) or saline is initiated before cardiop-
ulmonary bypass, and continues for 48 hours.  A colour
flow Doppler interfaced with an emboli signal
counting microprocessor is used to quantify emboli
activity in the right carotid artery during surgery.  The
neuropsychological examination is repeated at 8 days, 8
weeks, and 6 months after surgery.  Postoperative
decrement and recovery in the two groups will be
compared.  Twenty three patients had completed the
in-patient portion of the protocol, since its inception in
December 1994, by May 1995.

A protocol has been generated for a randomised,
double blinded, controlled trial of lignocaine as an adjunct
to HBO in the treatment of DCI.  This awaits completion of
the heliox trial at the Royal New Zealand Navy Hyperbaric
Unit and other Australasian Hyperbaric Units.
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PROVISIONAL REPORT ON AUSTRALIAN
DIVING-RELATED DEATHS IN 1992

Douglas Walker

Introduction

Of the 18 deaths in 1992 four were breath-hold
(snorkel) divers, nine used scuba, four had a hose supply
(one was using a cylinder air supply while the others were
compressor (hookah) supplied) and a single diver was
using a rebreather set.

Medical conditions were recorded for three of the
breath-hold, five of the scuba divers and two of those using
hookah.  However in several instances the findings were
either incidental or possibly so.  In only one was a possible
missed medical diagnosis apparent and it cannot be known
whether the patient gave a full history to her doctor (case
SC 92/8).  The asthma factor has uncertain significance in
case H 92/2 as there were significant other factors (fatigue,
cold, rough water, inexperience) present.

Trauma to the head was a factor in two cases, a
breath-hold diver and a military diver, and general trauma
dramatically ended the life of a hose supplied diver in a
dam.

Breath-hold diving deaths

BH 92/1
Because the sea was too calm for them to go surfing

or fishing the two friends decided they would go diving.
Although the victim was to be snorkelling, something he
did infrequently, he was not a  spear fisherman.  The
victim’s friend (buddy) was to be using scuba.  He was
trained but had made no dives in the previous 12 months.
They entered the water from rocks and swam out a short
distance before the buddy descended leaving the victim at
the surface. He was very surprised when, about 5 minutes
later, he saw his friend lying on the sea bed. as he did not
consider him capable of swimming to that depth (5 m).
The victim was without his mask, snorkel and fins and it
was apparent that he was unconscious.  The buddy
described trying, unsuccessfully, to give him air from his
regulator and then pulling him up to the surface after partly
inflating his buoyancy vest.


