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Introduction

The respiratory system is affected by diving via a
number of mechanisms.  The increased flow resistance
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Figure 1.  Gas density as a function of depth.
The densities of normoxic helium-oxygen (He-O2)

and hydrogen-oxygen (H2-O2) are displayed assuming a
constant partial pressure of O2 of 0.2 ATA.  Gas
temperature is 37°C.
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Air
Heliox 20% oxygen (20/80)
Normoxic (0.2 bar oxygen) heliox
Normoxic (0.2 bar oxygen) hydrogen oxygen

Depth in m

TABLE 1
DENSITY OF BREATHING FLUIDS

Fluid Depth Density
(msw) (g/l)

Air 0 1.1
He-O2 (20% O2) 0 0.4
Air 40 5.6
Air 50 6.8
Air 90 11.4
He-O2 (20% O2) 50 2.3
Trimix-10 (10% N2 0.5 ATA O2, balance He): 650 17.11

(the highest gas density at which arterial blood gases have been measured during exercise)
Ne-He-O2 (0.21 ATA O2, balance 76.8% Ne, 23.2% He): 377 25.22

(the highest gas density breathed by man)
Water 1000.0 3-6

Figure 2.  Effect of immersion on lung volumes.
Total lung capacity (TLC), functional residual

capacity (FRC), residual volume (RV), expiratory reserve
volume (ERV), forced vital capacity (FVC).  Immersion
reduces lung volumes predominantly by causing
redistribution of blood from the legs into the thorax (see
text).

engendered by breathing dense gas (Fig 1) and the addi-
tional mechanical load of the breathing apparatus added to
the changes in pulmonary compliance caused by water im-
mersion may significantly reduce ventilatory capacity.
Dense gas breathing also engenders a greater likelihood of
impairment of gas exchange due to diffusion problems in
the alveolus.  In addition, the lung is potentially subjected
to damage during decompression by both pulmonary over-
expansion and the effects of venous gas embolism.  Finally,
there is an uncommon syndrome in which young healthy
individuals develop pulmonary oedema shortly after immer-
sion at the beginning of a dive.

Immersion

PHYSIOLOGICAL EFFECTS

During head-up immersion, the normal tendency for
blood to pool in the legs due to gravity is immediately
reversed as the hydrostatic pressure gradient within the
venous system is almost exactly counterbalanced by the

external pressure gradient of the water column.  This
results in a redistribution of blood from the extremities into
the thorax ranging from 500 to 800 ml.  Some of this blood
is retained within the great vessels and the heart, while a
proportion of it engorges the pulmonary vessels, causing an
increase in central venous and pulmonary artery pressures.7

This results in a reduction in lung volume, particularly func-
tional residual capacity (FRC)8 and expiratory reserve
 volume (ERV), and a reduction in MVV of 5-10%.1  When
experiments are carried out in a hyperbaric chamber,
immersion while the chamber is at pressure results in less
decrement than at the surface.9  The effects of immersion

are fully exemplified by immersion to the neck and there is
no additional load engendered by further descent into the
water column.  Changes in lung volume which occur on
immersion are depicted in Fig. 2.

The engorged pulmonary vessels impinge upon the
airways and increase airway resistance.  Morrison and Taylor
reported that subjects at rest experienced a 3 fold increase
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in flow resistive work of breathing when they were immersed
in water.10  Upon immersion to the neck in water,
pulmonary dynamic compliance (Cdyn) is reduced
approximately 50% but static compliance (Cst) is
unchanged.11  The effect appears to be due to the
immersion-induced reduction in lung volume that occurs
because pressure at the mouth is lower than at the lung
centroid.  When mouthpiece pressure is increased to a value
equal to the hydrostatic pressure at the lung centroid, thus
restoring lung volume to control value, both dynamic and
static compliance are returned to normal.  Static
compliance is a measure of the change in static lung
volume for a given change in transpulmonary pressure (∆V/
∆P) whereas dynamic compliance, measured during
breathing or panting includes both respiratory compliance
and airway resistance.  The reduction in Cdyn with
immersion is therefore probably due to the change in
airway resistance and not due to altered lung tissue
compliance secondary to engorged pulmonary vasculature.

Immersion also causes a tendency for airways to close
at a higher lung volume (increased closing volume).12-15

Airway closure during immersion tends to occur at lung
volumes greater than FRC in older individuals.15,16  It has
been suggested that if closing volume is greater than
functional residual capacity, gas exchange units subtended
by closed airways would increase venous admixture,
causing a reduction in arterial PO2.  Cohen et al. reported
that alveolar-arterial gradient (PAO2-PaO2) increased from
7 to 16 mm Hg when subjects (mean age 23 years) were
immersed to the neck in water.17  However, a study in which
blood gases and VA/Q of the lung were measured,
immersion caused neither an increase in shunt nor blood
flow to low VA/Q units nor a reduction in PaO2.

14

IMMERSION PULMONARY OEDEMA.

Immersion pulmonary oedema is a syndrome in
which divers develop dyspnoea and cough productive of
pink, frothy sputum shortly after beginning a dive.18-20

Initially it was believed to occur only in cold water, which
supported the observation that the normal increase in
forearm vascular resistance upon cold exposure was
exaggerated in affected individuals, several of whom
subsequently developed hypertension.18  However, the
syndrome can also develop in warm water, and cold
exposure does not always cause an exaggerated increase in
forearm vascular resistance.

Although the cause is not fully understood there are
several possible factors which could promote pulmonary
oedema.  The increase in pulmonary vascular pressures
secondary to blood redistribution from the periphery to the
central compartment is enhanced by exercise,7 and
probably also by cold induced peripheral vasoconstriction.
It has been suggested that this increases airway resistance,
which then augments the effects of dense gas breathing (see

below) and the effect of external breathing resistance.
During inspiration, when the intrathoracic pressure is more
negative than usual, the left ventricular transmural pressure
required to eject blood (afterload) is increased.  A higher
afterload on the left ventricle, when the pulmonary
vasculature is already engorged due to immersion, could
perhaps precipitate a critical increase in pulmonary venous,
and hence capillary, pressure.  This mechanism has been
implicated in negative pressure pulmonary oedema during
emergence from general anaesthesia21  Finally, high
vascular pressure in conjunction with elevated pulmonary
blood flow has been hypothesised to cause direct
endothelial damage and capillary leak due to high shear
stress.22,23

The effects of increased gas density.

Density and viscosity are primary determinants of
the resistance to gas flow through a pipe.  While gas
viscosity is not significantly altered by pressures within the
range of human diving, there is a linear increase in gas
density with ambient pressure.  The theory of constant flow
in an infinitely long tube predicts that resistance increases
in direct proportion to density.  Measurements in divers
indicate that airway resistance is greater during expiration
than inspiration, and increases approximately in proportion
to the square root of the density.24,25

Under normobaric conditions exercise is typically
limited by the functional capacity of the cardiovascular
system.  However, at higher barometric pressure, and hence
gas density, exercise may be limited by the ability to move
gas into and out of the lungs.  One way of quantifying the
effect of increased gas density on pulmonary capacity is to
measure the maximum voluntary ventilation (MVV).  This
represents the total amount of gas per minute that can be
voluntarily moved in and out of the lungs with maximal
effort.  MVV has been measured systematically over a range
of depths and gas densities and its relationship to ambient
pressure (in atmospheres absolute) can be described as
follows (Fig. 3):

MVV
ATA

 = MVV0ρ-k

where:MVV
ATA

 = maximum voluntary ventilation at depth
(measured as pressure in atmospheres abolute)

MVV0 = MVV at the surface
ρ = gas density (g/l)
k = constant (0.3-0.5)

The mechanical effects of dense gas have been
vividly illustrated by Drs Larry Wood and Charles Bryan,
who performed isovolume pressure-flow measurements on
themselves breathing air at the surface and at equivalent
depths of 30 and 90 meters in a chamber (Fig. 4).  At depth
expiratory flow limitation occurs at lower transmural
pressures and higher volumes when compared with surface
controls.  Since maximum expiratory flow is determined
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Figure 3.  Effect of dive depth and breathing gas on maximum voluntary ventilation.
Air and heliox 80-20 are not shown deeper than 100 m as use of these breathing gases at deeper depths is limited by

oxygen toxicity.

primarily by the elastic recoil pressure of the lung, this
experiment illustrates the breathing strategy necessary to
maximise ventilation at depth:  increase lung volume and

Figure 4.  Isovolume pressure-flow relationship in one
subject breathing air in a dry hyperbaric chamber as a
function of depth (at 75% vital capacity).

There is a progressive fall in maximum expiratory
flow, which remains constant at pleural pressures greater
than 10-20 cm H2O.  Flow in this region is limited by
dynamic airway compression, and can be explained by wave
speed limitation.69  Data shown are from Wood and Bryan.70

shorten inspiratory time to allow maximum time for
exhalation.  Expiratory flow-volume curves were recorded
by the same investigators (Fig. 5).26

Figure 5.  Expiratory flow-volume curves at various
depths in a dry chamber breathing air.

Peak flow and the slope of the linear portion of the
curve are highly dependent upon gas density.  The data
indicate that at least some density dependent (turbulent) flow
exists in the lung under almost all conditions.  Data from
Wood and Bryan.26
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Maximum expiratory flow rate and lung conductance
(G, the reciprocal of resistance), have been measured over
a range of gas densities (Figs. 6 and 7).

G ∝  ρ-c

where:
c is a constant (0.39 during tidal breathing and 0.47

during hyperventilation).

Resistance during inspiration is typically lower than
it is during expiration (Fig. 8), suggesting that in order to
achieve maximum ventilation (or minimise resistive work
of breathing) a diver should use a short inspiratory time and
breathe at a high lung volume.

Figure 6.  Maximum expiratory flow as a function of gas
density and lung volume.

Data from Anthonisen.24

Figure 7.  Lung conductance as a function of density in
two individuals.

The lower panels represent inspiratory conductance
during hyperventilation.  During tidal breathing
conductance (G) was proportional to r-0.39; during
hyperventilation G was proportional to ρ-0.47, where
ρ = gas density.  The authors hypothesized that during
hyperventilation flow was more turbulent and hence
dependent on gas density to a greater degree.  Data from
Anthonisen.24

Figure 8.  Inspiratory and expiratory flow resistance as
a function of gas density during voluntary
hyperventilation.

Because of increased airway calibre during
inspiration, inspiratory resistance is less than expiratory
resistance.  These data indicate that maximum ventilation
is highly dependent upon the ventilatory strategy chosen by
the diver.  A short inspiration and prolonged expiration,
carried out at high lung volumes will minimise the
mechanical load imposed by high breathing resistance.  Data
from Vorosmarti.25

At the surface the maximum exercise ventilation is
typically about half of the MVV.  At 20 m depth (3 bar or
ATA) breathing air, MVV is reduced by about 35 percent;
at 40 m the MVV is reduced to about 50 percent of its
surface value.  Thus maximum exertion at depths in excess
of 40 m is likely to be associated with relative
hypoventilation as the ventilation required to eliminate
metabolically produced CO2 exceeds the maximum
possible ventilation.  This analysis tends to underestimate
the predicted maximum exercise rate because maximum
ventilation during exercise is approximately 10% higher than
at rest,27 and the respiratory control mechanism in
exercising divers allows their arterial PCO2 to rise.1,28-30

On the other hand these factors may be offset by the
increase in physiological dead space (see below).

However, the MVV may be an inaccurate predictor
of maximum exercise capacity.  The short term MVV does
not require sustained respiratory muscle effort, as does the
increase in ventilation required for exercise, and the
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maximum sustainable ventilation is only about 50% of the
15 second MVV.31,32  Stolp33 and Shephard34 attempted
to predict maximum exercise ventilation as a function of
sustained ventilatory capacity (SVC: sustained isocapnoeic
MVV >3 minutes in duration) at high gas densities and found
that when exercise ventilation exceeded 45-60% of SVC
there appeared to be a respiratory limitation to exercise.

During diving exercise ventilation tends to be lower
than at the surface, which can contribute to
hypercapnoea.29,35  While it would appear self evident that
this is due to high airway resistance, some evidence
suggests that it is ambient pressure rather than density that
predicts hypercapnoea.  Salzano, during simulated
chamber dives at depths up to 650 m, actually observed
higher ventilation during moderate exercise (see Fig. 9).1

While airway resistance may play a major role in
determining ventilatory performance during diving, one
must not forget the additional resistance that may exist
because of the breathing apparatus.  Warkander et al reported
that adding external breathing resistance to divers
exercising at 58 m resulted in elevation of end-tidal PCO2
(PETCO2) to 72 mm Hg.  At the end of the exercise PETCO2
was >90 mm Hg and loss of consciousness ensued.36

Under resting conditions in healthy individuals PETCO2 is
an accurate reflection of arterial PCO2, however during
exercise PETCO2 tends toward mixed venous PCO2 levels,
and it thus may exceed arterial PCO2.37  The relationship
between end-tidal and arterial PCO2 in diving, where there
may be additional factors such as VA/Q mismatch and
impaired gas diffusion, is unknown.  To date there are no
published data directly comparing the two values during
diving exercise.

Gas Phase Diffusion Impairment

At 1 ATA intra-alveolar diffusion of CO2 and O2 is
believed to occur sufficiently rapidly that diffusion
equilibrium occurs within each breath.38  However,
diffusion within the gas phase is slowed as gas density
increases and it has been speculated that during diving this
might result in impairment of CO2 and O2 exchange,
resulting in hypercapnia and hypoxaemia.  The Bohr dead
space is calculated using the standard formula below (Bohr
equation):

VD  = VT  1 -

where:VD = dead space
VT = tidal volume
PECO2 = mixed expired CO2
PACO2 = alveolar PCO2

The Enghoff modification of the Bohr equation is to
assume that PACO2 = arterial PCO2.

Direct measurement of arterial blood gases during
experimental dives has revealed hypercapnia, which may
be due to hypoventilation35 or reduced efficiency of
pulmonary CO2 transport as measured by an increase in
dead space/tidal volume ratio (shown in Fig. 9).1,39

PECO2

PACO2

Figure 9.  Exercise ventilatory response and arterial
PCO2 during bicycle exercise in a series of deep diving
experiments.

Plotted data are mean values from 5 volunteers par-
ticipating in experimental saturation dives to 460 and 650
m.  Gas density at depth was 7.9-17.1 g/l.  At rest and dur-
ing moderate work loads, arterial PCO2 at depth was main-
tained close to surface values, but because of greater physi-
ological dead space a higher minute ventilation is required.
At the highest work load minute ventilation approaches
MVV and cannot increase further resulting in hypercapnoea.
At depth the divers in this study demonstrate the typical
breathing pattern of individuals with high airway resistance,
higher tidal volume and lower breathing frequency.  Data
are from Salzano.1
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Observations suggesting O2 exchange impairment
were made by Chouteau,40 who noticed that goats in a
chamber breathing normoxic heliox (atmospheric PO2 =
0.22 bar or  ATA) at 71-91 bar (700-900 m equivalent depth,
11-16 g/l) became ataxic and lost their footing.  Increasing
the chamber PO2 reversed the situation, until, at 101 ATA
(1000 m, 16.8 g/l), one animal died despite increasing the
PO2 to 0.9 ATA.  Chouteau believed that this was due to
impaired O2 diffusion, and this was later referred to as the
“Chouteau effect”.  Initially, in deep diving exposures
using heliox in which humans experienced psychomotor
impairment, nausea, vomiting and tremor it was suspected
that hypoxia might be responsible.  However, it became
apparent that these symptoms, which were related to both
ambient pressure and rate of compression, and became
known as the high pressure nervous syndrome (HPNS), were
more likely due to neuronal membrane effects and
alterations in neurotransmitters unrelated to the PO2.

Paradoxically, Gledhill observed a reduction in
alveolar-arterial PO2 gradient in subjects breathing SF6.41

Except in one study of three individuals, in which
alveolar-arterial PO2 difference at rest increased 2-3 fold at
300 m (heliox, PO2 = 0.28 bar, inspired gas density 5
g/l),42 direct measurement of arterial PO2 in experimental
dives has revealed either a reduced A-a gradient at a gas
density of 3.2 g/l39 or no significant change (up to 17
g/l).1,35,43  Lambertsen reported a deep dive in which the
ambient PO2 in the breathing gas (up to 25.2 g/l) was
maintained at 0.21 bar.  Although arterial PO2 was not
measured, subjects did not report any difficulties which
might have been attributable to hypoxia.2  Actual
measurement of arterial PO2 at an inspired gas density
slightly higher than in the Chouteau experiments, with an
inspired PO2 of 0.5 bar, revealed values of 200-300 mm
Hg, even during exercise.1  The Chouteau effect was
therefore probably due to some phenomenon other than
hypoxia, possibly HPNS.  Interestingly, despite greater than
adequate arterial PO2 values, subjects in Salzano’s study
had significantly higher arterial lactate levels, an
observation consistent with reduced O2 delivery to
exercising muscle.1

The issue of gas phase diffusion impairment during
diving therefore remains an open one.  Certainly if there is
diffusion limitation to pulmonary O2 transport it is of
minor importance, at least in divers with normal lungs.  Since
most diving is performed using breathing mixtures with a
fixed proportion of O2, a built in safety feature during
descent that will tend to offset possible problems with
pulmonary O2 exchange, is the rise in inspired PO2 in
parallel with the increase in gas density.

Although the observed elevation in Bohr dead space
is consistent with gas phase diffusion limitation, there are
also other explanations.  An elevation in anatomic dead space
due to a breathing strategy in which breathing occurs at
higher lung volumes could contribute.  Impaired gas

distribution, causing VA/Q mismatching, could also
contribute to a higher dead space.  Finally, pressure-induced
dysfunction of macromolecules facilitating gas transport,
such as the enzyme carbonic anhydrase, may cause arterial
PCO2 to exceed pulmonary end-capillary PCO2 (‘blood
phase diffusion impairment’), thus simulating gas phase
diffusion impairment and similarly elevating measured dead
space.

Perhaps the ultimate experiment to assess diffusion
of gases in the medium of highest conceivable gas density
(1,000 g/l) was performed by Dr Joannes Kylstra.  Studies
in humans during therapeutic lung lavage, and one
volunteer, in whom one lung was filled with saline while
the other was ventilated with 100% O2 revealed only small
differences between PCO2 values in end-tidal expired
saline and arterial blood.4,5  Given the experimental
conditions of low CO2 elimination rate and extremely slow
exhalation (<3 breaths per minute) these data were
consistent with complete diffusive equilibrium between
alveolar liquid and end-capillary blood.

Effects of Decompression on the Lung

BAROTRAUMA

Pulmonary overpressurisation during decompression
results from breath holding or bronchial obstruction and
distal air trapping.  The most common manifestation is
mediastinal emphysema; less common are pneumothorax
and gas embolism.  An intrapulmonary pressure exceeding
60-80 mm Hg is sufficient to cause pulmonary damage.44,45

This pressure differential can occur if a diver takes a full
breath of compressed gas and then ascends from a depth as
shallow as 1-1.5 m.  AGE has indeed been reported after a
dive to one metre depth46 and in scuba divers breathing
compressed air near the surface while being washed over
by large waves.  It has also been observed in commercial
divers exposed to underwater explosions.

The numerous instances of pulmonary barotrauma
(PBT) not associated with breath holding have led to
hypotheses regarding regional bronchial obstruction.
Dahlback and Lundgren12 have demonstrated that
immersion induces intrapulmonary gas trapping, due in large
part to the increase in central blood volume.47  Forceful
exhalation during ascent from a dive might therefore
generate pulmonary barotrauma.  It is possible that the
physiological effects of immersion may be at least in part
responsible for the relatively common occurrence of
pulmonary barotrauma in divers in contrast to its extreme
rarity in the dry chamber environment during
decompression from hyperbaric oxygen therapy.

The effects of immersion to induce gas trapping may
be compounded by lung pathology.  Autopsy on a
submariner who died during submarine escape training
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revealed obstruction of the right middle lobe due to focal
bronchial obstruction from a calcified lymph node.48

Diffuse airways obstruction due to moderately severe asthma
has been associated with decompression illness,49,50 and
has traditionally been a contraindication to diving.51

However, an international panel reached the consensus that
individuals with asthma in whom pulmonary mechanics can
be rendered normal (including after a provocative test) by
pharmacotherapy are probably not at substantially increased
risk of DCI or PBT.52  Individuals with focal air trapping
due to cysts or bullae are probably at risk of pulmonary
barotrauma and AGE.53,54

Colebatch et al. have demonstrated that divers with
a history of AGE have less distensible lungs and increased
recoil pressure than control divers.55,56  In one diver, in
whom spontaneous mediastinal emphysema had occurred
when performing breath hold diving, after a maximum
inspiration, transpulmonary pressure exceeded 70 cm H2O,
a pressure which is close to the level demonstrated to cause
pulmonary rupture.  The authors speculated that stiff
airways may cause stress magnification at high lung
volumes (i.e. during greatest stretch).  It has been
demonstrated that restricting lung expansion with an
abdominal binder may protect against pulmonary
barotrauma.45,57  It is therefore not the increase in pressure
that produces pulmonary barotrauma, but rather the stretch.
It has therefore been suggested that during decompression
from a dive, breathing at either high or low lung volumes
should be avoided.58,59

EFFECTS OF VENOUS GAS EMBOLI (VGE).

During decompression, VGE are extremely common,
occurring in a large proportion of scuba divers engaged in
single60 or repetitive dives.61  A short lived decrease in
carbon monoxide transfer factor (DLCO) and arterial PO2
occurring in parallel with the appearance of VGE have been
described after a bounce dive to 55 m.62  Hlastala
demonstrated that intravenous infusion of gas in
experimental animals caused an increase in high V

A
/Q gas

exchange units,63 and Ohkuda et al. demonstrated in sheep
that this can result in capillary leak and pulmonary
oedema.64  High levels of VGE during decompression from
a dive can also produce pulmonary oedema in humans
(cardiorespiratory decompression illness or “chokes”).65

A group in which repetitive or continuous VGE have
been observed is divers decompressing from saturation
dives.  Indeed, several reports have demonstrated that, after
decompression, saturation divers have elevated respiratory
dead space and reduced DLCO to a degree that correlates
with a cumulative measure of VGE.66,67

Effects of Inspired Gases on the Lung

The pharmacological effect of a gas is a function of
its partial pressure.  Therefore, gas mixtures which may not
be toxic at 1 ATA can induce lung injury during diving.
Oxygen at a concentration of 21%, for example, can
become toxic to the lung at ambient pressures greater than
3 bar (20 m) where the PO2 = 0.6 bar.  At that
pressure many hours of exposure are ordinarily required,
therefore this is not an issue except during saturation diving
or during the treatment of decompression illness.
Pulmonary O2 toxicity manifests as substernal burning, a
reduction in vital capacity, capillary leak (Adult respiratory
distress syndrome or ARDS), and if exposure does not cease,
death.  Provided the inspired PO2 is reduced, pulmonary
O2 toxicity is usually completely reversible.  A detailed
discussion of pulmonary O2 toxicity by Clark is suggested
for more detail.68

Conclusions

The lung is exposed to numerous stresses while
diving.  The lung is the origin of arterial gas embolism, and
when large amounts of venous gas embolism are present it
is a target organ for decompression sickness.  The lung is at
risk of injury due to toxic environmental gases.  Finally, a
testament to the remarkable flexibility of this complex
anatomic structure, is the fact that the lung is subjected to
gases with properties considerably different from those of
ambient air and yet is able to maintain sufficient levels of
bulk gas movement and exchange of both O2 and CO2.
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INTERPRETATION OF GAS IN
DIVING AUTOPSIES

Chris Lawrence

Key Words
Accidents, bubbles, death, investigations.

Introduction

Recent autopsy protocols for diving fatalities have
emphasised the importance of the detection of gas in the
body to diagnose cerebral air gas embolism (CAGE), either
by erect chest X-ray, CT Scan or by dissection
underwater.1-3

Boyle’s Law states that at a constant temperature the
volume of a gas is inversely proportional to the pressure.
Cerebral air gas embolism occurs during an uncontrolled
ascent without exhalation because the volume of the gas in
the lungs expands as the ambient pressure falls, forcing gas
into the pulmonary circulation and thence into the cerebral
circulation.

Unfortunately, very little critical analysis has been
made of the significance of intravascular gas at autopsy.
Intravascular gas was detected in 12 out of 13 diving
fatalities autopsied at the NSW Institute of Forensic
Medicine.  In 5 of the 12, the history and autopsy findings
did not suggest cerebral air gas embolism.  What then is the
significance of gas?

Could the gas be artefactual?

Forensic pathologists have long recognised that the
process of decomposition causes gas formation.  Bacteria
proliferate in the dead body, particularly in the blood
vessels, breaking down blood and tissues and generating
gas in a process of putrefaction.  If decomposition was
responsible for the intravascular gas then this gas should
also be seen in non-diving fatalities.

Resuscitation, using endotracheal intubation,
positive pressure ventilation and intravenous cannulation,
can cause subcutaneous emphysema and even air emboli.
Eight out of 13 of the divers were subject to vigorous
resuscitation.  If resuscitation was responsible for the
intravascular gas then it should also be present in non-
diving fatalities.

Finally, at increased pressure the body absorbs
nitrogen.  Normally during ascent nitrogen diffuses out of
the tissues and is breathed out, part of the process of
decompression.  However, if death occurs at depth and the
body is brought rapidly to the surface, nitrogen bubbles will
evolve in blood vessels and in soft tissues and are not
removed because the circulation has stopped.
Decompression would appear to be capable of generating
intravascular gas in diving fatalities, either during or after
death.

Methods

All diving fatalities in NSW are autopsied at the NSW
Institute of Forensic Medicine.  In the cases presented here
erect chest and abdominal x-rays were taken before autopsy.
Autopsies were commenced as soon as possible after death,
however there were often delays in transporting the body.
The body was positioned with a block under the upper back
so that the chest was the highest point.  The chest was opened
first taking care not to cut the superficial veins of the neck.
Gas was aspirated from the heart, using a Hamilton
“gastight” syringe (Hamilton Company, Reno, Nevada
89502, USA).

The inferior vena cava and portal vein were opened
once the block was removed from under the body.  Air
aspirated was analysed by the Department of Mineral
Resources, Lidcombe.  The diving equipment was
examined and tested by NSW Police Divers, Sydney Water
Police.  Where dive computers were used they were down
loaded and the dive profiles recorded.  Air from the tanks
was also tested by the Department of Mineral Resources.

Results

Twelve of 13 diving fatalities had intravascular gas.

The time between death and post mortem varied from
8 hours to 5 days.  The average time was 41 hours.  Two
bodies were recovered from a wreck at 51 m after being
missing for 3 days.  If these two cases are excluded, the
average delay to post mortem was 26 hours, still a
significant delay.

In all 12 of the diving fatalities gas was present in
the heart, neck veins, inferior vena cava and portal/hepatic
veins, often with as much as 100 ml of gas in the right


