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Introduction
Decompression tables present a list of ostensibly safe

schedules.  Divers may expect that dives conducted
according to such schedules will be free from
decompression illness (DCI) and dives outside the limits
will result in DCI.  This belief is embodied in Haldane’s
statement, subsequent to the publication of his
decompression tables, “that compressed-air illness has now
practically disappeared except in isolated cases where from
one cause or another the regulations have not been carried
out”.1  The basis for this misconception might be the
classification of diving outcome into DCI or no DCI.
Using this classification, a particular dive either will or will
not result in DCI for an individual.  However, the outcome
of an identical dive profile may differ for another individual,
or the same individual on another occasion.  The
categorical assertion that decompression schedules
distinguish safe (zero risk of DCI) from unsafe dives for the
entire population is not only untrue but also impossible.
Many commonly used decompression tables have a
reasonably low risk of DCI, but any assumption of safety
obscures the fact that there will be exceptional incidents of
DCI.

Despite his later unequivocal statement, Haldane’s
original work with goats showed typical biological
variability in individual animal susceptibility to DCI.2

Figure 1 shows some of Haldane’s goat data plotted in the
form of a dose–response curve.  This curve illustrates a low,

but finite risk of DCI, following a trivial diving exposure
(in this case low exposure pressure) with the risk increasing
with the exposure.  The exposure where risk rises most
rapidly defines the most common limiting exposure for the
population.  Haldane’s (and all subsequent) assertion of
safety is based on defining the limiting exposure from a
point towards the left of this curve.  However, theoretically,
there is no point on such dose–response curves where risk
is zero.

Figure 1.  Dose–response curve (cumulative distribution
function) for DCI constructed from data tabulated in
Haldane’s experimental studies with goats.2  Groups of 4 to
23 goats were exposed to the pressure indicated on the x-
axis for 4 hours (3 hours at 4.47 ATA) and decompressed to
1 ATA over 2 to 10 minutes (31 minutes from 6.1 ATA).
The circles show the proportion (relative frequency) of goats
experiencing any symptoms of DCI.  The line is a sigmoid
curve, F(x), fitted to the original data.

This paper examines two aspects of uncertainty
involved in the prediction of DCI.  Firstly, DCI is the result
of complex processes that are only superficially evaluated
in the decompression theory that underlies decompression
tables.  Secondly, the main aim is to illustrate that
sensitivity to DCI will be normally distributed in a
population of divers.

The normal distribution

The sigmoid dose-response curve in figure 1 is
derived from an underlying bell-shaped distribution of
sensitivity to DCI (see Figure 2).  Many biological
phenomena conform to a particular bell-shaped distribution
called the “normal distribution”.

Figure 3 that shows computer simulations of 3
different dice experiments.  The distribution of values found
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Figure 2.  The normal distribution of possible values of a
variable X.  The x-axis gives the possible values of X.  The
solid line shows the normal probability density function,
f(x) and the dashed line shows the cumulative density
function, F(x).

for a sample of 1,000 rolls of one die is shown in figure 3a.
If the die is fair, each value from 1 to 6 is equally likely
(rectangular or uniform probability distribution function)
and this is reflected in the frequency distribution.  However
the sum of two dice rolled 1,000 times, shown in figure 3b,
shows more results in the centre because there is only one
way to get a sum of 2 or of 12 but six ways to get a sum of
7.  Overlaid on this frequency distribution is the predicted
normal probability density function  (normal distribution).
Figure 3c shows the frequency distribution of the sum of
100 dice rolled simultaneously and repeated 1,000 times.
The levels of observed sums are on the x-axis (intervals of
5) and the bars represent the frequencies of those sums
(y-axis).  Sums near 350 are common and larger or smaller
levels are increasingly less common.  The frequency
distribution is clearly normally distributed, fitting the bell
shaped curve of the predicted normal probability density
function.  This is a (idealised) mathematical model of the
frequency distribution.  Whereas the probability density is
an abstract concept, this continuous function can be seen as
describing the relative frequency for every level on the
x-axis (even though only integer levels are possible in the
case of dice sums).

The probability (numerically equivalent to the
relative frequency) of an individual event in a population
can be estimated from the probability density function of a
sample.  For example, in the dice experiment of figure 3c,
only sums between 295 and 417 occurred in this sample of
1,000 rolls, although sums between 100 and 600 are
possible. Using the normal probability density function the
probability of rolling any number, say 590 (which would be
very low), can be estimated.  The probability of any range
of levels is estimated from the area under the probability
density function (integral) over that range.  The cumulative
distribution function (or probability integral) gives the
probability of all levels less than or equal to each value on
the x-axis.  For a bell-shaped curves the cumulative

Figure 3.  Frequency histograms of a computer simulation
of dice rolling experiments illustrating the central limit
theorum.  The histograms are of the frequency and relative
frequency (y-axis) of the sum of the face values (x-axis).
The simulations are for 1,000 rolls of 1 (3a), 2  (3b) or 100
(3c) dice.  Overlaid on histograms 3b and 3c is the
predicted normal probability distribution function (solid
line), f(x).

distribution function is sigmoid (see figure 2).  For the dice
experiment the cumulative distribution function at 590
would estimate the probability of rolling 590 or less (which
would be very high).

The normal probability density function describes a
family of symmetrical bell-shaped curves that differ only in
height and width.  The height and width of the curve is
determined by a single parameter, the standard deviation.
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A biological response as complicated as DCI is the
result of many contributing factors, ranging from the well
quantified to the unknown.  By virtue of the central limit
theorem alone, it is reasonable to predict that sensitivity to
DCI should be normally distributed in a population and
therefore outcome after decompression is uncertain.  To
illustrate that this is not just a statistical “black-box”
approach, we will now examine experimental findings of
aspects of the cascade of events that lead to DCI to see if
they conform to this prediction of a normal distribution.

Events leading to DCI

For any dive, the sequence of events leading to DCI
can be grouped broadly into:
1 uptake and elimination of inert gas;
2 bubble formation upon decompression; and
3 pathophysiological response to bubbles.

Decompression schedules determine the presence or
absence of DCI following any defined dive profile
(pressure/time/breathing gas history) using mathematical
models incorporating some or all of these mechanisms.  In
typical decompression models, the input (dive profile) and
output (DCI) are measured but the intervening mechanisms
are modelled using latent variables (unobserved theoretical
constructs).  In other words, the models are not based on
actual measurements of tissue gas uptake or bubble
formation.  Haldane’s schedules, and later derivations,
calculate uptake and elimination of inert gas (latent
variable) in the context of a threshold for symptoms of DCI,
with only the implicit assumption that bubbles do not form
within safe schedules.2  Later models have incorporated
bubble formation as a latent variable with varying degrees
of sophistication.3  Most models do not incorporate
pathophysiological responses.

Uptake and elimination of inert gas

Mathematical models of inert gas kinetics come in
varying degrees of sophistication.  Distributed models
account for diffusion of gas between capillaries and tissue
units of specified geometry.  The membrane-limited
diffusion compartmental model ignores tissue geometry and
confines diffusion to a membrane between well-stirred blood
and tissue compartments.  The simplest model is the single
perfusion limited compartment, which  ignores tissue
geometry and diffusion, where gas uptake into a well-stirred
compartment, consisting of tissue and blood, is limited only
by delivery of gas in the arterial blood.  Each simplification
results in a more easily handled set of equations.  The
difference between arterial blood and a single perfusion
limited compartment gas content declines exponentially with
a rate constant, defined by blood flow, compartment
volume and solubility of gas in blood and tissue.  Many
decompression models incorporate several theoretical well-

A quite different experiment could result in a
frequency distribution with a similar appearance.  The risk
of DCI for an upward excursion from saturation is a
function of the decompression and the time spent at reduced
pressure.

If a group of subjects were decompressed, a
frequency histogram of the number of individuals first
displaying symptoms (y-axis) during various time intervals
(x-axis) might look like the histogram in figure 3c and could
be described using a normal probability density function.
In other words the sensitivity to DCI in this sample would
be normally distributed.  If the cumulative number of
individuals having displayed symptoms at each time
interval was plotted against the same x-axis the result could
be described using cumulative distribution function.  Such
a cumulative distribution function is recognisable as a dose–
response curve where the value at any time would estimate
the probability of DCI for an individual exposed to that
pressure for that duration.

Although the results of many experimental designs
naturally present as sigmoid dose–response curves
(cumulative distribution function) the underlying bell-
shaped probability distribution is not obvious.  A common
experimental design is to expose groups of subjects to
different levels of decompression stress (e.g. exposure
pressure, exposure time, extent of decompression) and record
the number of individuals from each group displaying
symptoms of DCI.  A plot of the relative frequency of
symptoms in each group (y-axis) against decompression
stress (x-axis) would give a sigmoid dose–response curve
as is shown in Figure 1 using some of Haldane’s original
data.

An important aspect of probability density functions
is the belief that a relatively few models (of which the
normal probability density function is an important one) fit
many real world situations, a notion supported by empirical
observation.  Many biological phenomena appear to be
normally distributed which can be in part explained by the
central limit theorem.

Central Limit theorem

A simplified explanation of this theorem states that,
given certain conditions, if a variable (Sn) is the result of a
sum of a large number of other variables
(Sn=X1+X2+…+Xn), a sample of variable Sn will be
normally distributed.

This is true regardless of how the underlying
variable (X1, X2,…Xn) are distributed.  This is illustrated
in figure 3.  Normal distribution is the assumed model for
biological phenomena because any measured variable (e.g.
sensitivity to DCI) is the result of many
underlying genetic and environmental factors.
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stirred single perfusion limited compartments that are not
identified with any particular body tissue.  It is unfortunate
that a misleading interchange of the terms compartment and
tissue is found in decompression literature.  As this is a
theoretical treatment, actual inert gas content of any
identified critical tissues is never known.  In fact, perfusion
limited models have been shown to fit poorly to actual gas
exchange data.4

Nevertheless, even the most sophisticated
deterministic model will not account for the distribution of
inert gas uptake across individuals.  Figure 4 shows the
frequency distribution of concentration of inert gas tracer
(nitrous oxide) in the brains of 9 sheep after 15 minutes
inhalation of that gas under similar conditions.  A
distribution with a wide dispersion and some central
tendency is identifiable even in this small sample.  The
predicted normal probability density function is overlaid on
the histogram.  Statistical analysis (Shapiro-Wilks W test)
indicates that this sample is normally distributed.

the rate of bubble number formation will be critically
dependent on the surface tension at the site of bubble
formation, which is unknown.  If, as is widely believed,
bubbles nucleation is heterogeneous, the number (and
distribution) of these pre-existing nuclei must also be known.

It is difficult to find data on number of nuclei except
in the engineering cavitation literature.  Figure 5 shows some
of the data of Crump of bubble formation from nuclei in a
venturi nozzle.6,7  Replotting the original data as a frequency
distribution reveals that, under the controlled experimental
conditions, the number of bubbles formed follows a normal
distribution (Shapiro-Wilks W test).

Figure 4.  Frequency distribution of inert gas (nitrous
oxide) concentration in sheep brain.  Nine sheep breathed
10% nitrous oxide for 15 minutes and nitrous oxide content
of brain effluent blood was assayed by headspace gas
chromatography.  Values of brain effluent inert gas
concentrations are on the x-axis and the frequency of those
values on the y-axis.  The solid line is the predicted normal
probability distribution function, f(x).

Bubble formation

Bubbles form in tissues if ambient pressure is
reduced below total tissue dissolved gas tension
(concentration/solubility).  Bubble formation is important
for two reasons, both dependent on the total amount of gas
that separates into bubbles.  Firstly, bubbles probably cause
DCI.  Secondly, elimination of gas from tissue containing
free (undissolved) gas (bubbles) will be slower than
predicted by many decompression models.  The peak
volume of free gas that separates from tissue depends on
the number of bubbles.5  The number of bubbles that form
for any given decompression is difficult to predict.  If
bubble inception can result from homogenous nucleation,

Figure 5.  Frequency distribution of bubble nuclei, formed
at a venturi nozzzle, in water.  The histogram is constructed
from data of Crump7 shown in figure 3.2 of Knapp et al.6

The solid line is the predicted normal probability
distribution function, f(x).

Pathophysiology

DCI is a multi-causal disease and one postulated
mechanism is complement activation at the blood-bubble
interface.  The extent of such activation will depend on the
surface area of the gas phase, which will be a function of
both total free gas volume and bubble number.  Figure 6
shows data on the activation of C5A in blood samples with
introduction of a gas stream.8  The data for 36 such
measurements (6 blood samples from each of 6 human
subjects) is replotted in the form of a frequency histogram.
The data is normally distributed (Shapiro-Wilks W test).

Predicting the distribution of DCI

If the processes that combine to cause DCI are each
normally distributed, it is possible to predict the
distribution of DCI itself.  Although only a portion of all
contributing factors, the uptake and elimination of inert gas,
bubble formation upon decompression and the
pathophysiological response to bubbles serve as examples.
For any defined dive profile, the most likely level of
response at each of these steps is determined by the input
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in inaccuracy.  Decompression models present a theoretical
framework for organising decompression experience, not
an accurate description of the physiological and
pathophysiological pathways to DCI.  For instance,
Haldane’s experimental observations were the “safe”
decompression of goats from assumed (but probably
incomplete) saturation; all other aspects of his model were
purely theoretical.2  Tabulated decompression schedules may
be considerably altered from the underlying model output
as a result of field testing, and at the other extreme
schedules generated from desktop or diver carried
computer are purely model based.  In the latter case the
accuracy of the model is critical.

Since the sensitivity to DCI is normally distributed
in a population of individuals we cannot predict a schedule
that separates dives always free of DCI from those always
resulting in DCI (square cumulative distribution function).
Even the most sophisticated or accurate deterministic model
will fail occasionally.  Probabilistic decompression models
attempt to address this by assigning a probability of DCI to
a defined dive profile (based on mechanistic models).10,11

Setting limits far to the left of the true sigmoid cumulative
distribution function separates dives with very low risk of
DCI from all others.  Such conservative limits result in
uselessly short bottom times.  Practical schedules are a
compromise between useful bottom time and acceptable risk
of DCI.

The normal distribution of sensitivity to DCI does
not imply that attempts to improve prediction of DCI should
be abandoned.  If more is learnt about the nature of the
intervening processes and incorporated into more accurate
models we can make better predictions of the most likely

Figure 6.  Frequency distribution of bubble-activated C5a
in human serum.  The histogram is constructed from data
shown in figure 4b of Bergh et al.  The solid line is the
predicted normal probability distribution function, f(x). Figure 7.  A linear (sequential) combination of

independent normal variables has a normal distribution.  The
steps involved in the production of DCI are normally
distributed.  A process of multiplication connects the steps.
As a result, DCI has a normal distribution that can be
predicted from the distributions of the preceding steps.

from the preceding step.  However, the input from the
preceding step will not influence the shape of the
distribution or determine the exact outcome of the
subsequent step.  Thus DCI (XDCI) is the result of a linear
combination of statistically independent variables (XGAS,
XBUB, XPATH).  Any linear combination of independent
normal variables will have a predictable normal
distribution.

The standard deviation (which determines the shape)
of the resulting normal probability density function can be
calculated from the standard deviation of the underlying
variables.  The formula for this calculation depends on the
nature of the linear relationship of the variables.  In the
current example it is reasonable to assume that a process of
multiplication connects each of the events leading to DCI.

XDCI = XGAS x XBUB x XPATH
The coefficient of variation (CV = standard

deviation/mean) allows comparison between distributions
of variables with different units of measurement.  For the
relationship above, the coefficient of variation of DCI can
be computed from the individual coefficients of variation at
each step according to the following formula:9

(CVDCI)2 ≅  (CVGAS)2 + (CVBUB)2 + (CVPATH)2

From the distributions shown in figures 4–6, CVGAS
= 0.14, CVBUB = 0.39, and CVPATH = 0.26.  Using the
formula above results in CVDCI = 0.49.  The dispersion in
each intervening step combines and produces a greater
dispersion in the resulting distribution.  This relationship is
illustrated in figure 7.

Discussion

All mathematical models are a necessary
simplification of reality, but such simplification can result
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outcome (without influencing the shape of the distribution
of XDCI).  Such knowledge may also allow tailoring of
schedules to specific populations so that the intervening
normal distributions of processes would be more compact
as would the final distribution of sensitivity to DCI (for that
population).
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Beginnings

Whereas diving with an open bell, and hence
exposure to compressed gas, dates back to at least the 16th
century, when decompression illness was first observed is
not known.  However, when the vacuum pump was invented
in the 17th century, there was a tremendous fascination with
the effects of vacuum on living things.  The first example of
decompression illness (DCI) and subsequent recompression
was described by Robert Boyle in 1670, when he described
the effects on animals of decompression in a bell jar.  An
excerpt from one of his papers is reproduced below:

“We took a viper and including her in the greatest
sort of small receivers, we emptied the glass very
carefully, and the viper moved up and down, as if it
were to seek for air, and after a while, foamed a
little at the mouth, and left off that foam sticking to
the inside of the glass:  her body swelled not
considerably, and her neck less, till a pretty while
after we had left pumping; but afterwards the body
and neck grew prodigiously tumid and a blister
appeared on the back…The jaws remained mightily
opened, and somewhat distorted…the air being
readmitted after 23 hours in all, the viper’s mouth
was presently closed, though soon after it was opened
again, and continued long so; and scorching or
pinching the tail made a motion in the whole body,
that argued some life”.

This is probably the first written account of
decompression sickness (DCS) in animals (and the partial
effectiveness of recompression).1

Compressed Air Work and Diving

The observations of Robert Boyle remained a
laboratory curiosity, with little practical relevance until the
development of diving and compressed air work in the 19th
century.  In 1854 Pol and Watelle first described DCI in
miners working in compressed air at Avaleresse-la-Naville
in France.2  A compressed air environment (caisson) in
which men performed the excavation, was utilised to keep
water and mud out of the working environment.  At that site
there were 64 men employed, of whom 16 are known to
have suffered accidents, and there were two deaths.


