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Abstract

(Regnard J, Veil-Picard M, Bouhaddi M, Castagna O. A neoprene vest hastens dyspnoea and leg fatigue during exercise 
testing: entangled breathing and cardiac hindrance? Diving and Hyperbaric Medicine. 2021 December 20;51(4):376–381. 
doi: 10.28920/dhm51.4.376-381. PMID: 34897604.)
Symptoms and contributing factors of immersion pulmonary oedema (IPO) are not observed during non-immersed heart and 
lung function assessments. We report a case in which intense snorkelling led to IPO, which was subsequently investigated 
by duplicating cardiopulmonary exercise testing with (neoprene vest test – NVT) and without (standard test – ST) the 
wearing of a neoprene vest. The two trials utilised the same incremental cycling exercise protocol. The vest hastened 
the occurrence and intensity of dyspnoea and leg fatigue (Borg scales) and led to an earlier interruption of effort. Minute 
ventilation and breathing frequency rose faster in the NVT, while systolic blood pressure and pulse pressure were lower 
than in the ST. These observations suggest that restrictive loading of inspiratory work caused a faster rise of intensity 
and unpleasant sensations while possibly promoting pulmonary congestion, heart filling impairment and lowering blood 
flow to the exercising muscles. The subject reported sensations close to those of the immersed event in the NVT. These 
observations may indicate that increased external inspiratory loading imposed by a tight vest during immersion could 
contribute to pathophysiological events.

Introduction

Immersion pulmonary oedema (IPO) can be life-threatening.1 
It is more likely if cardiovascular function is impaired,2,3,4 
but it can occur in fit subjects during immersed exercise.5–7  
However, to date no non-immersed investigation reproduces 
symptoms and physiological features of an immersed event. 
Yet recognising individual thresholds of functional tolerance 
should provide clues to tailor safer patterns of immersed 
activity. A contribution of inspiratory effort to IPO was 
evidenced either during exercise or when coping with the 
breathing loads coming with immersed activities.8,9  Here we 
report how subjective sensations and potential physiological 
features of a strenuous swimming-induced IPO event were 
elicited during tailored cardiopulmonary testing.

Case report

A 44-year-old fit male fireman was referred for maximal 
exercise testing after enduring a swimming-induced episode 
of IPO. The subject was a regularly trained triathlon 
competitor, with a two pack-year current smoking history 
and no known cardiovascular disease. The event occurred 

during rescue training (12°C lake water) with snorkel-
swimming over 1 km, followed by 50 m swimming and 
3 m depth diving to rescue a dummy 'victim'. The subject 
used a 5 mm whole body neoprene suit, a mask and a 
20 mm lumen snorkel. The 1 km distance was accomplished in 
13 min 45 s (< 20 min expected) and after 5 min rest the 
subject swam to the dummy but was unable to dive and 
grab it, feeling out of breath. His legs could not continue 
finning, and he was taken back to shore by a buddy with 
severe dyspnoea, cough and bloody sputum.

After 30 min of oxygen mask breathing (12 L·min-1) the 
respiratory symptoms had disappeared and the subject 
went home. Two hours later he attended the emergency 
department. At examination no signs of heart failure or leg 
thrombophlebitis were found. Lung wheezes were heard 
bilaterally. Vital signs were normal. ECG, transthoracic 
echocardiography and computed tomography (CT) 
pulmonary angiography were performed, together with 
blood analysis of B-type natriuretic peptide, D-dimers 
and troponin. The CT showed anterior ground glass 
changes in the upper lobes and fine thickening of 
interlobular septa reflecting venous congestion (Figure 1). 
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IPO was diagnosed. One week later, chest X-ray and pulmonary 
function tests were normal (FVC = 5.8 L, FEV1 = 4.4 L, 
FEF50% = 4.79 L·s-1).

Two months later, a standard bicycle ergometer maximal 
exercise test was performed (standard test – ST). The 
subject wore shorts and T-shirt, and after a 3 min warm-
up at 50 W, workload increased by 25 W every minute. 
Measurements during the test were as previously described.10  
The maximum oxygen consumption (VO

2
max) was 

57.1 ml·min-1·kg-1 (163 % predicted) and maximum of 
work rate was 400 W. Resting blood pressure was high 
(169/109 mm Hg), but the blood pressure profile during 
maximal exercising was normal. A 24 h ambulatory 
recording of blood pressure confirmed hypertension.

After one month, the exercise test was repeated with exactly 
the same protocol but included the wearing of a 5 mm thick 
neoprene vest (neoprene vest test – NVT). During this trial, 
both dyspnoea intensity and lower limb fatigue (Borg scales) 
rose earlier and were significantly higher at any given work 
rate than during the first test (Figure 2). The NVT ended 
earlier, at 350 W and 55.2 ml·min-1·kg-1 VO

2
max, with 

severe breathlessness. Minute ventilation and breathing 
frequency rose faster during the NVT than ST (Figure 3), 
but tidal volume was similar at each level in the two tests 
(max 3.1 L in ST and 3.2 L in the NVT). The patient 
appraised his sensations as equivalent to those experienced 
during the immersed event with a feeling of “occurring 
death” before bloody spitting. No significant dynamic 
hyperinflation, and no mechanical ventilatory limitation 
were seen. Heart rate and diastolic blood pressure rose 
earlier than during the ST. Systolic arterial pressure and 
pulse pressure plateaued earlier and remained lower during 
the NVT than the ST (Figure 4). In the ear lobe arterialised 
capillary blood PaO

2
 and SaO

2
 were not decreased during 

maximum exercise in either the ST and NVT. The subject 
described the intensity and unpleasantness of dyspnoea 
during the NVT as similar to those during the field event.

Discussion

Completing the 1 km surface swim in less than 14 min i.e., 
much faster than required, required high-level exercise. 
The elastic restriction of the neoprene suit reinforced 
the effects of hydrostatic pressure11 to reduce both total 
vascular capacity in the thorax and lung compliance,12 
as venous return, right heart preload and lung blood 

Figure 1
Sagittal and transverse tomodensitometric computed tomography 

scans taken two hours after the IPO occurrence

Figure 2
Dyspnea and leg fatigue scores (Borg scales) during the two 
cardiopulmonary exercise tests; NVT − neoprene vest test; 

ST − standard test; W – workload in watts

Figure 3
Minute ventilation and breathing frequency during the two 
cardiopulmonary exercise tests; NVT − neoprene vest test; 

ST − standard test

Figure 4
Systolic arterial pressure and pulse pressure during the two 
cardiopulmonary exercise tests; NVT − neoprene vest test; 

ST − standard test
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volume increased.8,13  During immersion the neoprene suit 
also loaded lung mechanics by requiring supplementary 
inspiratory effort14,15 and increasing the transpulmonary 
pressure load.8  Finally, the snorkel enlarged the anatomical 
dead space, which also requires an increased ventilatory 
volume.16  Together the loads of immersion, elastic suit and 
snorkel substantially increased inspiratory effort during the 
14 min high intensity swim. Adding dead space and chest 
strapping cause severe dyspnoea and exercise intolerance in 
healthy subjects cycling on land.16  The physiological strains 
and sensations in that study appear similar to those in IPO.

Most of the differences observed between the ST and NVT 
tests were likely explained by the “abnormal” restrictive 
effect of the neoprene vest.17  One study concluded that 
with “abnormal” restrictive constraints on tidal expansion, 
the intensity and unpleasantness of dyspnoea reflect the 
awareness of increased neural respiratory drive needed to 
achieve any given level of ventilation during exercise.17  
A higher inspiratory power of breathing was required to 
achieve tidal volume at each exercise level during the NVT 
than the ST. Minute ventilation rose faster during the NVT 
in keeping with the previous results.16  At high exercising 
levels, ventilatory muscles require increased blood flow, 
diverted from the working limb muscles.18  Accordingly, 
during the NVT the earlier rises of heart rate and diastolic 
blood pressure at the highest workloads (Figure 5) likely 
conveyed the higher sympathetic activity instrumental in 
re-routing part of the cardiac output from the lower limbs 
towards respiratory muscles, leading to earlier leg fatigue.

The first systolic blood pressure value was 9 mmHg higher in 
the NVT than the ST (Figure 4). Higher anxiety at beginning 
of a second maximal exercise test or simple measurement 
variability19 might explain this. However, we consider that 
despite baseline sympathetic possibly being higher during 
the NVT, the plateauing of systolic arterial pressure and 
pulse pressure to remain roughly 10 mmHg and 20 mmHg 
respectively lower than during the ST (Figure 4) could be 
consistent with restricted stroke volume during this second 

part of the NVT i.e., at the highest energy expenditure 
levels.18  Immersed cumulative inspiratory effort was found 
to correlate with end-stage right heart preloads and right to 
left ventricle ratios,8 thus paving the way for imbalance of 
ventricular outputs and consequently fluid extravasation into 
lung interstitium.20  During the NVT the additionally loaded 
inspiration due to the restrictive effect of the vest elasticity 
may have caused lowering of pleural-mediastinal pressure 
thus increasing both right heart preload and left ventricle 
afterload while possibly decreasing the left ventricle preload 
through leftward interventricular septal displacement.21,22  
Such a restricted left ventricular preload would then impede 
the rise of stroke volume, consistent with reduced systolic 
and pulse pressures in the NVT. In addition, the larger 
sympathetic activation during the NVT would have added 
to left ventricular afterload and further impeded the stroke 
volume.

Immersion-linked conditions are instrumental in developing 
IPO.23  IPO was first described during cold water diving.24  
Immersion in cold water causes peripheral vasoconstriction, 
lung congestion, increased pulmonary arterial pressure and 
increased left ventricle afterload.25  Immersion may also 
increase airway resistance and breathing work.26  In the 
present case the water temperature could have triggered 
peripheral vasoconstriction and contributed to increase 
central blood volume and right heart preload.24,27  However, 
it is also possible that during the vigorous swimming, skin 
vasoconstriction was suppressed, given the combination of 
the large muscular heat production and the suit-hindered 
heat dispersal into water.28  The higher work of breathing in 
water than air is described,15,29,30 but neither the additional 
inspiratory load of wet suit, nor its haemodynamic burden 
have been reported to the best of our knowledge. A small 
effect of a wet suit on maximal expiratory flow has been 
described.31

The development of haemoptysis and pulmonary oedema 
during the field event suggest pulmonary capillary 
stress failure32,33 suggestive of cardiopulmonary stresses 
greater than those of the NVT. Our interpretation of the 
haemodynamic change during the NVT, possibly suggesting 
increased congestion of right heart and pulmonary 
circulation with restrained stroke volume would mimic a loss 
of left ventricular diastolic compliance.34,35  This also takes 
place during pulsus paradoxus as it develops during high 
inspiratory efforts as in acute asthma36 and whose cardiac 
features root in normal breathing.37  Pulsus paradoxus is 
defined by a more than 10 mmHg inspiratory lowering of 
pulse pressure linked to right ventricle overdistension and 
the simultaneously reduced left ventricular filling through 
parallel biventricular interdependence.36  This pattern would 
likely support the feeling of suffocation featured in congestive 
heart failure at rest38 and repeatedly reported during IPO. 
Therefore we submit that the duplicated cardiopulmonary 
exercise testing sheds some light on symptoms repeatedly 
reported during the development of IPO. The faster increase 

Figure 5
Heart rate and diastolic blood pressure during the two 
cardiopulmonary exercise tests; NVT − neoprene vest test; 

ST − standard test



Diving and Hyperbaric Medicine  Volume 51 No. 4 December 2021 379

in dyspnoea during the NVT than the ST reflected the 
required higher inspiratory effort. In turn, this might have 
prompted a parallel circulatory impairment indirectly 
evidenced by the restriction of systolic and pulse pressures 
at the highest levels of exercising power together with 
higher leg fatigue. In status asthmaticus, pulsus paradoxus 
and dyspnea are lowered when breathing load is lessened 
through replacing air by heliox inhalation.39  Accordingly we 
hypothesise that, beside the greater inspiratory effort caused 
by the elastic vest, part of the additional dyspnoeic sensations 
in the second half of the NVT might have been linked to 
ventricular imbalance and restriction of left stroke volume.

IPO results from extravasation of plasma into interstitial 
airway spaces, leading to decreased airway luminal caliber 
and later to impaired pulmonary gas exchange. Ultimately 
this causes arterial hypoxaemia and alveolar flooding.40,41  
Arterial blood gases were not altered in either test, and 
DLCO was not assessed so that no direct evidence of 
altered lung gas exchange was obtained. The absence of 
hypoxaemia is nevertheless consistent with the gradual 
development of right to left ventricular imbalance17,33 which 
would eventually result in impaired gas exchange. According 
to this pathophysiological paradigm various forms of 
reversible myocardial dysfunction may then follow during 
immersed activities.2,3,42  The higher myocardial work and 
a raised sympathetic stimulation would also pave the way 
for myocardial ischaemic events.43

The occurrence of IPO has been suspected to predict the 
development of arterial hypertension,24 and the reverse 
connection was described.44  In the present case, the 
high blood pressures on first test day led to ambulatory 
monitoring, diagnosing moderate hypertension, and 
appropriate treatment was started after the second exercise 
test. Some degree of hypertension-linked left heart diastolic 
dysfunction and a higher left ventricular afterload bolstered 
by sympathetic activation at high exercising levels might 
have enhanced the delay of left ventricular emptying as 
compared to the right.45,46

In conclusion, these observations underscore the potential 
respiratory burden imposed by an elastic wet suit during 
substantial swimming effort. We suggest they may also 
shed some new light on the role of work of breathing in 
developing IPO through interlocked haemodynamic and 
respiratory alterations. 
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